Faculty Advisor: Dr. R.L. Clark Jr. and Dr. Arthur Ball

Key Sponsors: Altium Designer, Collision Plus Inc., CSM, General Motors, Lockheed Martin, Trova Commercial Vehicles, Yamaha Motor Ventures

Introduction

BOLT designs, builds, and races electric motorcycles. The goal of this year's project is to develop the next iteration BOLT bike that will compete in the AHRMA Formula Lightning Division. This project builds on the previous year's senior design projects with a new powertrain, updated cooling system, and new modular battery packs.

Customer Needs

The team held discussions with our faculty advisor and potential customers to develop customer needs and target specification values.

High voltage systems are safe
Capacity is sufficient to complete a race
Maintain safe battery temperature
Maintain safe motor and motor controller temperature
Maintain reasonable weight (~460lbs)
Appropriate center of gravity
Durability on the track
High lean angle
Ensure ease of assembly
Minimize cost
Power comparable to similarly sized superbikes

Modular Pack Design

- \succ Includes milled and 3D printed ABS alongside laser cut aircraft grade 1100 aluminum
- ➤ Multi-layered design ensures easy manufacturability
- ➤ State-of-the-art wire bonding decreases contact resistance
- \succ Modular and easily serviceable in the event of a cell failure

www.PosterPresentations.con

BOLT Electric Motorcycle Design Team

Senior Design Members:

Erin Cox, Caleb Esatto, Josh Dalton, Dalton Reck, Erin Freck, Mason Gautschi, Colton Gehr, Collin Gray, Matt Mayger, Mason McCray, Ben Ryan, Marissa Sluss, Weesam Semaan, and Kensey Wishon

Upgraded Cooling System

- \succ Increased radiator size for more heat dissipation
- \succ Larger pump for increased flow rate
- \succ Reimagined system to minimize losses
- \succ Integrated vacuum port to test for leaks
- and remove air bubbles

Battery Pack Structure

- ➤ Lightweight sheet sheet metal construction
- \succ Modular design increases serviceability
- Structure decreases load on individual cells
- \succ Easily removed from the bike with plugged
- connections and quick disconnect fittings

Increased Sensor Data Collection

Thermistors

 \succ Monitors temperatures of individual battery modules > Increased from 8 thermistors (BOLT IV) to 47 thermistors (BOLT V)

Strain Gauges

- \succ Monitors the forces on the custom frame
- \succ Logs data to CAN for future analysis

Stock Components

- \succ Utilized stock frame components made of magnesium
- alloys to decrease bike weight
- \succ Stock suspension and brakes ensure rider safety

- \succ Welded 4130 steel
- \succ Tube trellis design maximises weight and strength
- \succ Custom designed, built, and manufactured by students.
- \succ Welds tested under 3 ton loads
- \succ Aluminum internal structure for efficient mounting
- \succ Optimized for internal volume and quick assembly

Telemetry

- \succ Real time CAN data transmission from the bike when it is on the track
- \succ Data displayed using a custom GUI

Powertrain Components

- Motor Emrax 268 MV
- > 210kW at 4500RPM
- > 500nm peak torque
- ≻ 22.3kg

INR-21700-P458 + MOLICEL 109 2L830 03

- Motor Controller PM150DZR
- ➤ 225Arms continuous current
- > 170kW peak output
- ≻ 10kg
- BMS Orion BMS 2
- \succ 144 cell capacity
- ≻ 2.2kg

Battery Cells - Molicel P45B

- \succ Delivers rated power for up to 5 minutes
- \succ Tested at up to 60A per cell continuous
- > Total pack: 600V at 300A
- ➤ Peak power: 180kW

Winglets

- \succ First step in the team's creation of a full aero package
- \succ Designed for 20lbs of downforce at race speeds
- \succ Manufacured out of carbon fiber reinforced nylon

Improvements Over Previous Generation

- > 88% decrease in assembly and disassembly times
- \succ Safer and more efficient high voltage work
- \succ Increased power ceiling from 110kw to 200kw
- \succ New cutting-edge motor and batteries for maximum power with minimal heat losses
- \succ Sufficient cooling to ensure maximum performance over the course of a race
- \succ Robust sensor data collection and wireless telemetry

Future Considerations

- > Design and validation of aeronomic fairings
- \succ Race data collection and dataset creation
- \succ Testing to determine optimal gear ratio; race preparation
- > System power delivery tuning and optimization